// Enable debug prints to serial monitor #define MY_DEBUG // Enable and select radio type attached //#define MY_RADIO_NRF24 //#define MY_RADIO_RFM69 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. //#define MY_RF24_PA_LEVEL RF24_PA_LOW // Enable serial gateway #define MY_GATEWAY_SERIAL // Define a lower baud rate for Arduino's running on 8 MHz (Arduino Pro Mini 3.3V & SenseBender) #if F_CPU == 8000000L #define MY_BAUD_RATE 38400 #endif // Flash leds on rx/tx/err // #define MY_LEDS_BLINKING_FEATURE // Set blinking period // #define MY_DEFAULT_LED_BLINK_PERIOD 300 // Inverses the behavior of leds // #define MY_WITH_LEDS_BLINKING_INVERSE // Enable inclusion mode #define MY_INCLUSION_MODE_FEATURE // Enable Inclusion mode button on gateway #define MY_INCLUSION_BUTTON_FEATURE // Inverses behavior of inclusion button (if using external pullup) //#define MY_INCLUSION_BUTTON_EXTERNAL_PULLUP // Set inclusion mode duration (in seconds) #define MY_INCLUSION_MODE_DURATION 60 // Digital pin used for inclusion mode button #define MY_INCLUSION_MODE_BUTTON_PIN 3 // Uncomment to override default HW configurations //#define MY_DEFAULT_ERR_LED_PIN 4 // Error led pin //#define MY_DEFAULT_RX_LED_PIN 6 // Receive led pin //#define MY_DEFAULT_TX_LED_PIN 5 // the PCB, on board LED #include #include #include // Enable repeater functionality for this node #define MY_REPEATER_FEATURE //Definiowanie pinow cyfrowych dla danego przekaznika #define RELAY_0 4 // Arduino Digital I/O pin number for first relay (second on pin+1 etc) #define RELAY_1 5 #define RELAY_2 6 #define RELAY_3 7 #define RELAY_4 8 #define RELAY_5 9 #define RELAY_6 10 #define RELAY_7 11 #define RELAY_8 12 #define RELAY_9 13 #define RELAY_10 14 #define RELAY_11 15 #define RELAY_12 16 #define RELAY_13 17 #define RELAY_14 18 #define RELAY_15 19 #define NUMBER_OF_RELAYS 16 // Total number of attached relays #define RELAY_ON 0 // GPIO value to write to turn on attached relay #define RELAY_OFF 1 // GPIO value to write to turn off attached relay //Definiowanie pinow analogowych od ktorych jest podlaczony przycisk #define BUTTON0_PIN A0 #define BUTTON1_PIN A1 #define BUTTON2_PIN A2 #define BUTTON3_PIN A3 #define BUTTON4_PIN A4 #define BUTTON5_PIN A5 #define BUTTON6_PIN A6 #define BUTTON7_PIN A7 #define BUTTON8_PIN A8 #define BUTTON9_PIN A9 #define BUTTON10_PIN A10 #define BUTTON11_PIN A11 #define BUTTON12_PIN A12 #define BUTTON13_PIN A13 #define BUTTON14_PIN A14 #define BUTTON15_PIN A15 void before() { for (int sensor = 1, pin = RELAY_1; sensor <= NUMBER_OF_RELAYS; sensor++, pin++) { // Then set relay pins in output mode pinMode(pin, OUTPUT); // Set relay to last known state (using eeprom storage) digitalWrite(pin, loadState(sensor) ? RELAY_ON : RELAY_OFF); } } // Imitacja przycisku Bounce debouncer0 = Bounce(); Bounce debouncer1 = Bounce(); Bounce debouncer2 = Bounce(); Bounce debouncer3 = Bounce(); Bounce debouncer4 = Bounce(); Bounce debouncer5 = Bounce(); Bounce debouncer6 = Bounce(); Bounce debouncer7 = Bounce(); Bounce debouncer8 = Bounce(); Bounce debouncer9 = Bounce(); Bounce debouncer10 = Bounce(); Bounce debouncer11 = Bounce(); Bounce debouncer12 = Bounce(); Bounce debouncer13 = Bounce(); Bounce debouncer14 = Bounce(); Bounce debouncer15 = Bounce(); void setup() { // Setup locally attached sensors delay(10000); // Setup the button. pinMode(BUTTON0_PIN, INPUT_PULLUP); pinMode(BUTTON1_PIN, INPUT_PULLUP); pinMode(BUTTON2_PIN, INPUT_PULLUP); pinMode(BUTTON3_PIN, INPUT_PULLUP); pinMode(BUTTON4_PIN, INPUT_PULLUP); pinMode(BUTTON5_PIN, INPUT_PULLUP); pinMode(BUTTON6_PIN, INPUT_PULLUP); pinMode(BUTTON7_PIN, INPUT_PULLUP); pinMode(BUTTON8_PIN, INPUT_PULLUP); pinMode(BUTTON9_PIN, INPUT_PULLUP); pinMode(BUTTON10_PIN, INPUT_PULLUP); pinMode(BUTTON11_PIN, INPUT_PULLUP); pinMode(BUTTON12_PIN, INPUT_PULLUP); pinMode(BUTTON13_PIN, INPUT_PULLUP); pinMode(BUTTON14_PIN, INPUT_PULLUP); pinMode(BUTTON15_PIN, INPUT_PULLUP); // After setting up the button, setup debouncer. debouncer0.attach(BUTTON0_PIN); debouncer0.interval(5); debouncer1.attach(BUTTON1_PIN); debouncer1.interval(5); debouncer2.attach(BUTTON2_PIN); debouncer2.interval(5); debouncer3.attach(BUTTON3_PIN); debouncer3.interval(5); debouncer4.attach(BUTTON4_PIN); debouncer4.interval(5); debouncer5.attach(BUTTON5_PIN); debouncer5.interval(5); debouncer6.attach(BUTTON6_PIN); debouncer6.interval(5); debouncer7.attach(BUTTON7_PIN); debouncer7.interval(5); debouncer8.attach(BUTTON8_PIN); debouncer8.interval(5); debouncer9.attach(BUTTON9_PIN); debouncer9.interval(5); debouncer10.attach(BUTTON10_PIN); debouncer10.interval(5); debouncer11.attach(BUTTON11_PIN); debouncer11.interval(5); debouncer12.attach(BUTTON12_PIN); debouncer12.interval(5); debouncer13.attach(BUTTON13_PIN); debouncer13.interval(5); debouncer14.attach(BUTTON14_PIN); debouncer14.interval(5); debouncer15.attach(BUTTON15_PIN); debouncer15.interval(5); //presentation(); } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("Relay", "1.0"); for (int sensor = 1, pin = RELAY_0; sensor <= NUMBER_OF_RELAYS; sensor++, pin++) { // Register all sensors to gw (they will be created as child devices) present(sensor, S_LIGHT); } } MyMessage msg0(0, V_LIGHT); MyMessage msg1(1, V_LIGHT); MyMessage msg2(2, V_LIGHT); MyMessage msg3(3, V_LIGHT); MyMessage msg4(4, V_LIGHT); MyMessage msg5(5, V_LIGHT); MyMessage msg6(6, V_LIGHT); MyMessage msg7(7, V_LIGHT); MyMessage msg8(8, V_LIGHT); MyMessage msg9(9, V_LIGHT); MyMessage msg10(10, V_LIGHT); MyMessage msg11(11, V_LIGHT); MyMessage msg12(12, V_LIGHT); MyMessage msg13(13, V_LIGHT); MyMessage msg14(14, V_LIGHT); MyMessage msg15(15, V_LIGHT); void loop() { // Send locally attached sensor data here if (debouncer0.update()) { int value0 = debouncer0.read(); if (value0 == LOW) { saveState(0, !loadState(0)); digitalWrite(RELAY_0, loadState(0) ? RELAY_ON : RELAY_OFF); send(msg0.set(loadState(0))); } } if (debouncer1.update()) { // Get the update value. int value1 = debouncer1.read(); // Send in the new value. if (value1 == LOW) { saveState(1, !loadState(1)); digitalWrite(RELAY_1, loadState(1) ? RELAY_ON : RELAY_OFF); send(msg1.set(loadState(1))); } } if (debouncer2.update()) { int value2 = debouncer2.read(); if (value2 == LOW) { saveState(2, !loadState(2)); digitalWrite(RELAY_2, loadState(2) ? RELAY_ON : RELAY_OFF); send(msg2.set(loadState(2))); } } if (debouncer3.update()) { int value3 = debouncer3.read(); if (value3 == LOW) { saveState(3, !loadState(3)); digitalWrite(RELAY_3, loadState(3) ? RELAY_ON : RELAY_OFF); send(msg3.set(loadState(3))); } } if (debouncer4.update()) { int value4 = debouncer4.read(); if (value4 == LOW) { saveState(4, !loadState(4)); digitalWrite(RELAY_4, loadState(4) ? RELAY_ON : RELAY_OFF); send(msg4.set(loadState(4))); } } if (debouncer5.update()) { int value5 = debouncer5.read(); if (value5 == LOW) { saveState(5, !loadState(5)); digitalWrite(RELAY_5, loadState(5) ? RELAY_ON : RELAY_OFF); send(msg5.set(loadState(5))); } } if (debouncer6.update()) { int value6 = debouncer6.read(); if (value6 == LOW) { saveState(6, !loadState(6)); digitalWrite(RELAY_6, loadState(6) ? RELAY_ON : RELAY_OFF); send(msg6.set(loadState(6))); } } if (debouncer7.update()) { int value7 = debouncer7.read(); if (value7 == LOW) { saveState(7, !loadState(7)); digitalWrite(RELAY_7, loadState(7) ? RELAY_ON : RELAY_OFF); send(msg7.set(loadState(7))); } } if (debouncer8.update()) { int value8 = debouncer8.read(); if (value8 == LOW) { saveState(8, !loadState(8)); digitalWrite(RELAY_8, loadState(8) ? RELAY_ON : RELAY_OFF); send(msg8.set(loadState(8))); } } if (debouncer9.update()) { int value9 = debouncer9.read(); if (value9 == LOW) { saveState(9, !loadState(9)); digitalWrite(RELAY_9, loadState(9) ? RELAY_ON : RELAY_OFF); send(msg9.set(loadState(9))); } } if (debouncer10.update()) { int value10 = debouncer10.read(); if (value10 == LOW) { saveState(10, !loadState(10)); digitalWrite(RELAY_10, loadState(10) ? RELAY_ON : RELAY_OFF); send(msg10.set(loadState(10))); } } if (debouncer11.update()) { int value11 = debouncer11.read(); if (value11 == LOW) { saveState(11, !loadState(11)); digitalWrite(RELAY_11, loadState(11) ? RELAY_ON : RELAY_OFF); send(msg11.set(loadState(11))); } } if (debouncer12.update()) { int value12 = debouncer12.read(); if (value12 == LOW) { saveState(12, !loadState(12)); digitalWrite(RELAY_12, loadState(12) ? RELAY_ON : RELAY_OFF); send(msg12.set(loadState(12))); } } if (debouncer13.update()) { int value13 = debouncer13.read(); if (value13 == LOW) { saveState(13, !loadState(13)); digitalWrite(RELAY_13, loadState(13) ? RELAY_ON : RELAY_OFF); send(msg13.set(loadState(13))); } } if (debouncer14.update()) { int value14 = debouncer14.read(); if (value14 == LOW) { saveState(14, !loadState(14)); digitalWrite(RELAY_14, loadState(14) ? RELAY_ON : RELAY_OFF); send(msg14.set(loadState(14))); } } if (debouncer15.update()) { int value15 = debouncer15.read(); if (value15 == LOW) { saveState(15, !loadState(15)); digitalWrite(RELAY_15, loadState(15) ? RELAY_ON : RELAY_OFF); send(msg15.set(loadState(15))); } } } void receive(const MyMessage &message) { // We only expect one type of message from controller. But we better check anyway. if (message.type == V_LIGHT) { // Change relay state digitalWrite(message.sensor - 1 + RELAY_1, message.getBool() ? RELAY_ON : RELAY_OFF); // Store state in eeprom saveState(message.sensor, message.getBool()); // Write some debug info Serial.print("Incoming change for sensor:"); Serial.print(message.sensor); Serial.print(", New status: "); Serial.println(message.getBool()); } }